πŸ”¬
Minerva AI (EN)
search
⌘Ctrlk
πŸ”¬
Minerva AI (EN)
  • πŸ‘‹Welcome to Minerva AI
  • STUDIES & FINDINGS
    • ☝️Abstract
    • πŸ“Introduction and related works
    • πŸ’‘Model overview
      • ♾️Convolutional neural network - CNN
      • ✍️Dropout techniques
      • 🧠Long short-term memory (LSTM)
      • πŸ™†Methodology
      • πŸ”—Data collection and merging
      • πŸ› οΈModel architecture
      • βž•Dataset and Parameter Optimization
      • πŸ‘ŒResults and discussion
      • βš“Trading Philosophy & Method
      • βž—Basic algorithm
      • 🌠Results
    • πŸ‘‰Conclusion
  • PRODUCT DEVELOPMENT
    • πŸ‘€Vision and development roadmap
    • 🌟Revenue models
    • πŸͺ™Tokenomics
  • TEAM
    • πŸ‘₯Founding team
  • RESOURCES
    • πŸ“—References
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. STUDIES & FINDINGS

πŸ’‘Model overview

In this paper, we utilized a combination of CNN and LSTM layers. Therefore, before presenting our methodology, we will introduce the concepts of CNN and LSTM.

hashtag
Our findings

♾️Convolutional neural network - CNNchevron-right✍️Dropout techniqueschevron-right🧠Long short-term memory (LSTM)chevron-rightπŸ™†Methodologychevron-rightπŸ”—Data collection and mergingchevron-rightπŸ› οΈModel architecturechevron-rightβž•Dataset and Parameter Optimizationchevron-rightπŸ‘ŒResults and discussionchevron-rightβš“Trading Philosophy & Methodchevron-rightβž—Basic algorithmchevron-right🌠Resultschevron-right

hashtag
Get Started

PreviousIntroduction and related workschevron-leftNextConvolutional neural network - CNNchevron-right

Last updated 2 years ago

  • Our findings
  • Get Started