πŸ“—References

  1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. In Decentralized Business Review; Seoul, Korea, 2008; p. 21260. Available online: https://www.debr.io/article/21260-bitcoin-a-peer-to-peer-electronic-cash-system (accessed on 19 June 2022)

  2. Livieris, I.E.; Kiriakidou, N.; Stavroyiannis, S.; Pintelas, P. An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics 2021, 10, 287. [CrossRef]

  3. Hoseinzade E, Haratizadeh S (2019) CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Syst Appl 129:273–285. https://doi.org/10.1016/j.eswa.2019.03.029

  4. Kara Y, AcarBoyacioglu M, Baykan Γ–K (2011) Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange. Expert Syst Appl 38(5):5311–5319. https://doi.org/10.1016/j.eswa.2010.10.027

  5. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

  6. Nelson DMQ, Pereira ACM, De Oliveira RA (2010) 2011 international joint conference on neural networks. IEEE Trans Neural Netw 21(8):1378–1378. https://doi.org/10.1109/tnn.2010.2063350

  7. Di Persio L, Honchar O (2016) Artificial neural networks architectures for stock price prediction: comparisons and applications. International Journal of Circuits, Systems and Signal Processing 10:403–413

  8. Gunduz H, Yaslan Y, Cataltepe Z (2017) Intraday prediction of borsa Istanbul using convolutional neural networks and feature correlations. Knowl-Based Syst 137:138–148

  9. ArΓ©valo R, GarcΓ­a J, Guijarro F, Peris A (2017) A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting. Expert Systems with Applications 81:177–92

  10. Gunduz H, Yaslan Y, Cataltepe Z (2017) Intraday prediction of borsa Istanbul using convolutional neural networks and feature correlations. Knowl-Based Syst 137:138–148

  11. Nelson DMQ, Pereira ACM, De Oliveira RA (2010) 2011 international joint conference on neural networks. IEEE Trans Neural Netw 21(8):1378–1378. https://doi.org/10.1109/tnn.2010.2063350

  12. Hoseinzade E, Haratizadeh S (2019) CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Syst Appl 129:273–285. https://doi.org/10.1016/j.eswa.2019.03.029

Last updated